Эволюта и эвольвента - significado y definición. Qué es Эволюта и эвольвента
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es Эволюта и эвольвента - definición

КРИВАЯ, НОРМАЛЬ В КАЖДОЙ ТОЧКЕ КОТОРОЙ ЯВЛЯЕТСЯ КАСАТЕЛЬНОЙ К ИСХОДНОЙ КРИВОЙ
Эволюта и эвольвента; Инволюта
  • эвольвенты окружности]]
  • цепной линии]]
  • зубчатом колесе]] с эвольвентным зацеплением

Эволюта и эвольвента         
(от лат. evolutus - развёрнутый и evolvens, род. падеж evolventis - разворачивающий)

понятия дифференциальной геометрии: множество m центров кривизны плоской кривой l называется эволютой этой кривой; кривая l по отношению к своей эволюте называется эвольвентой (см. рис.). Эвольвента l кривой m может быть получена как траектория конца В нити AB, которая наматывается на линию m или разматывается с неё (этим построением эвольвенты и объясняется др. её назв. "развёртка"). Указанное построение эвольвенты делает ясным следующие свойства Э. и э.: 1) касательная CD в произвольной точке С эволюты является нормалью в соответствующей точке D эвольвенты (следовательно, эвольвента есть ортогональная траектория касательных эволюты); 2) всякая ортогональная траектория касательных кривой т является эвольвентой (поэтому у данной кривой бесконечно много эвольвент); 3) разность радиусов кривизны AB и CD в точках В и D эвольвенты равна длине дуги AC эволюты; 4) эволюта является огибающей (См. Огибающая) семейства нормалей эвольвенты.

Если линия l задана параметрическими уравнениями х = x (t), y = y (t), то параметрические уравнения её эволюты будут следующие:

,

Эвольвенту пространственной кривой можно определить как ортогональную траекторию касательных этой кривой.

Лит.: Рашевский П. К., Курс дифференциальной геометрии, 4 изд., М., 1956.

Рис. к ст. Эволюта и эвольвента.

Инволюта         
(математическое)

то же, что эвольвента. См. Эволюта и эвольвента.

Эвольвента         

Wikipedia

Эвольвента

Эвольве́нта (от лат. evolvens «разворачивающийся») плоской линии L {\displaystyle L}  — это линия L {\displaystyle L_{*}} , по отношению к которой L {\displaystyle L} является эволютой.

Иными словами — кривая, нормаль в каждой точке которой является касательной к исходной кривой.

Если линия L {\displaystyle L} задана уравнением r ¯ = r ¯ ( s ) {\displaystyle {\bar {r}}={\bar {r}}(s)} (где s {\displaystyle s}  — натуральный параметр), то уравнение её эвольвенты имеет вид

ψ ¯ = r ¯ + ( α s ) r ¯ ˙ {\displaystyle {\bar {\psi }}={\bar {r}}+(\alpha -s){\dot {\bar {r}}}} ,

где α {\displaystyle \alpha }  — произвольный параметр.

Для параметрически заданной кривой уравнение эвольвенты

X = x x a t x 2 + y 2 d t x 2 + y 2 {\displaystyle X=x-{\frac {x'\int \limits _{a}^{t}{\sqrt {x'^{2}+y'^{2}}}\,dt}{\sqrt {x'^{2}+y'^{2}}}}}
Y = y y a t x 2 + y 2 d t x 2 + y 2 {\displaystyle Y=y-{\frac {y'\int \limits _{a}^{t}{\sqrt {x'^{2}+y'^{2}}}\,dt}{\sqrt {x'^{2}+y'^{2}}}}}